
NASA Technical Memorandum 102733

AEROELASTIC ANALYSIS OF WINGS USING THE EULER

EQUATIONS WITH A DEFORMING MESH

BRIAN A. ROBINSON

JOHN T. BATINA

HENRY T. Y. YANG

(NASA-T"-lO2733) AEKnEI_AS]rlC A,ALYSI _ CF

t,/I/'qG_/ USING THE EUL_R =OUATTL_JS _[TH A

i2FF_MING M_SH (NASA) iI p CSCL OIA

NOVEMBER 1990

r,3/o2

t_91-1007,_

Unc 1 os

0310_30

N/ A
Nalional Aeronautics and
Space Administralion

Langley Reseerch Cenlm'
Hamplon. Virginia 23665



J, o



AEROELASTIC ANALYSIS OF WINGS USING THE EULER EQUATIONS
WiTH A DEFORMING MESH

Brian A. Roblnaon"

McDonnell Aircraft Company
St. Louis, Misaourl 63166

John T. Batlna*"

NASA Langley Research Center
Hampton, Virginia 23665-5225

Henry T. Y. Yangt
Purdue University

West Lafayette, Indiana 47907

Abstract
Modifications to the CFL3D three-dimensional unsteady

Euler/Navier-Stokes code for the aeroelastJc analysis of
wings are described. The modifications involve including a
deforming mesh capability which can move the mesh to
continuously conform to the instantaneous shape of the
aeroelastically deforming wing, and including the struclural
equations of motion for their simultaneous time-integration
with the governing flow equations. Calculations were
performed using the Euler equations to verify the
modifications to the code and as a first-step toward
aeroelastic analysis using the Navier-Slokes equalions.
Results are presented for the NACA 0012 airfoil and a 45 °
sweptback wing to demonstrate applications of CFL3D for
generalized force computations and aeroelastic analysis.
Comparisons are made with published Euler results for Ihe
NACA 0012 airfoil and with experimental flutter data for the
45 ° sweptback wing to assess the accuracy of the present
capability. These comparisons show good agreement and,
thus, the CFL3D code may be used with confidence for
aeroelastic analysis of wings. The paper describes the
modifications that were made to the code and presents results
and comparisons which assess the capability.

Nomenclature

nondimensional distance from midchord to elastic
axis

a= freeslream speed of sound

Aij generalized aerodynamic force resulting from
pressure induced by mode J acting through mode i

b semichord, c/2

c reference chord

ci

cp
k

generalized damping of mode i

pressure coefficient

reduced frequency, _c/2U.
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k i generalized stiffness of mode i

m airfoil mass per unit span

mi generalized mass of mode i

M. freestream Mach number

qi generalized displacement of mode i

Qi generalized force in mode i

Q dynamic pressure, _--P.

nondimensional dynamic pressure, (U./(bo_.V'_p))2

ra airfoil radius of gyration about elastic axis

t time, nondimensionalized by lreestream speed ol
sound and airfoil chord, Ta.Jc

T time, seconds

u i load vector

U. sireamwise freestream speed

x i stale veclor

x= nondimensional distance from elastic axis
to mass center

c=o mean angle of a.ack

qB integral of state-transition matrix

ix mass ralio

p. froestream density

a real part of Laplace transform variable

slate-transition malrix

angular frequency

mh uncoupled natural frequency of bending mode

_.. uncoupled natural frequency of torsion mode



Introduction

In recent years, there has been increased interest in the
development of aeroelastic analysis methods involving
computational fluid dynamics techniques. 1 This research has
been highly focused on developing finits-diffarence codes for
the solution of the transonic small-disturbance2, 3 and full

potential4, 5 equations, although efforts are currently
underway at the higher equation levels as well. 6"11 For
example, Bendtksen and Kousen 6 presented transonic flutter
results for two-degree-of-freedom (plunging and pitching)
airfoils by simultaneously integrating the structural
equations of motion with the two-dimensional unsteady Euisr
equations. The Euler equations were Inlegrated using a
Runge-Kutta time-stepping scheme involving a finite-
volume spatial discretization and a moving mesh. The
instantaneous mesh was taken to be a linear combination of
meshes corresponding to rigid plunging and pitching of the
airfoil. In a following study, Kousen and Bendiksen 7 applied
their method of Ref. 6 to investigate the nonlinear
aeroelaslic behavior of two-degree-of-freedom airfoils at
transonic speeds. In Ref. 7, transonic flutter instabilities
were shown to lead to stable limit-cycle oscillations. Wu,
Kaza, and Sankar 8 have time-integrated the unsteady
compressible Navier-Stokes equations for airfoils
undergoing one- and two-degree-of-freedom eeroelastic
motions. In Ref. 8, flutter characteristics of airfoils at high
angles of attack were investigated including cases with stall
flutter. The method of Ref. 8 has also been recently applied
by Reddy, Srivastava, and Kaza 9 to study the effects of
rotational flow, viscosity, thickness, and shape on the
transonic flutter dip phenomena. The study concluded that
the influence of these effects on flutter, for the cases

cons_oereo, was small near the minimum of the flutter dip,

but may be large away from the dip. Guruswamy 10 has
demonstraled the simultaneous time integration of the three-
dimensional Euler equations along with the structural
equations of motion. The capability was demonstrated in a
time-marching flutter analysis performed for a rectangular
wing with a parabolic-arc airfoil section. Finally, Rausch,
Batina, and Yang 11 have presented Euler aeroelastic results
for two degree-of-freedom airfoils using a flow solver based
on unstructured gdds. A novel aspect of the capability of
Ref. 11 is the dynamic mesh algorithm which is used to move
the mesh so it continuously conforms to the instantaneous
position of the airfoil. The algorithm is completely general
in that it can treat realistic motions and deformations of
multiple two-dimensional bodies.

Many of the methods that are currently being developed
for aeroelastic analysis assume that the mesh moves rigidly
or that the mesh shears as the body deforms. These
assumptions consequently limit the applicability of the
procedures to rigid-body or small-amplitude molions.
These problems, for example, are easily demonstrated by
considering an airfoil section of a wing whose aeroelaslic
deformation involves significant chordwtse bending. As the
airfoil section bends, grid lines that eminate from the
concave surface of the section may collapse onto the
neighboring grid lines. Similar difficulties can occur if the
wing has significant spanwise bending. Also, for methods
where the mesh is constrained such thai airfoil sections of
the wing can only pitch and plunge, chordwise deformation
cannot be modeled and wing tip deflections must remain
small. Therefore the purpose of the paper is to describe the
implementation of a deforming mesh capability which
effectively removes the rigid-body and small-amplitude
limitations of previous methods. This capability was
developed within the CFL3D unsteady EulerlNavler-Stokes
code. 12.13 The deforming mesh capability is a general
procedure, based on the dynamic mesh algorithm of Refs. 11
and 14, which can move the mesh for realistic motions and
structural deformations of wings. In addition, the structural
equations of motion have been implemented within CFL.3D to

allow simultaneous time-integration with the governing flow
equations for aeroelastic analysis. Calculations were
performed using the Euler equations In verify the
modifications to the code and as a first step toward
aeroelastic analysis using the Navler-Slokes equations.
Results are presented for the NACA 0012 airfoil and a 45"
sweptbeck wing to demonstrate applications of CFL3D for
generalized force computation and aeroelastic analysis.
Comparisons are made with the Euler results of Ref. 11 for
the NACA 0012 airfoil and with the experimental flutter data
of Ref. 15 for the 45" sweptback wing to assess the accuracy
of the present procedures. The paper describes the
modifications that were made In the CFL3D code and presents
results and comparisons which assess the capability.

Euler Solution Alaorithm

In the present study the flow was assumed to be governed
by the time-dependent Euler equations which may be written
in conservation form as

o
(1)

where the vector _ represents the conserved variables

divided by the Jacoblen and I_, _, A are the inviscid fluxes
which have been transformed from the cartesian (x, y, z)

coordinate system to generalized (_,,'q,_)coordinates.
Equations (1) are solved within the CFL3D code by a three-
factor, implicit, finite-volume algorithm based on upwind-
biased spatial differencing. The upwind-biased differencing
involves either flux-vector splitting or flux-difference
splitting implemented as a cell-centered disoretization.
Flux-limiting may also be used in the spatial differencing to
determine values of the flow variables on the cell faces. For
unsteady applications, the algorithm includes the grid speed
metric terms that are necessary for time-accuracy with
moving meshes, although the original scheme was limited to
cases involving rigid-body plunge or pitch where the mesh
moves without deformation. Modifications In the algorithm
to include the lerms adsing from a deforming mesh, which
are required for aeroelastic analysis, are described in the
following section.

Deformina Mesh Alnorilhm

A deforming mesh algorithm was developed and
implemented to move the mesh so that it continuously
conforms to the instantaneous shape of the aeroelastically
deforming wing. The method, based on thal of Ref. 14,
models the mesh as a spring network where each edge of each
hexahedral cell represents a linear spdng. The stiffness of
each spring is inversely I:X'oportional to a specified power of
the length of the edge. For example, along an edge

(i)- (i +1), the stiffness k is

[ _ x)=. = =lp'=k =1.01 (x , (YI+,-Yl) +(Zl.,-Z) J0+_1 +
2

(2)

In addition to the cell edges, springs are also placed along the
diagonals of each cell face to control cell shearing, with
spring stiffness defined similar to Eq. (2). The power p
which appears in Eq. (2) is used to control the stiffness of
the cells near the wing. These cells are typically very small
in comparison with cells in the far field, and as such it has
been found advantageous to increase the stiffness of the near
field cells to avoid excessive mesh distortion in this region.
The stiffness is increased by increasing the value of p. In
this study, p was typically set equal to lwo or three.



Theproceduretomovethemeshisdescribedasfollows.
Ateach time step, the instantaneous positions of the points on
the wing are prescribed while the points on the outer
boundary are held fixed. The displacements of the interior

points 8x,Sy,8 z are determined by solving the static

equilibrium equations which result from a summation of
forces at each point in the x, y, and z directions. This
solution is approximated by using a predictor-correcter
procedure which first predicts the displacements of the
interior points by a linear extrapolation of displacements
from the two previous time levels according to

gX,. j.==2 8:,.=. n-1=-Sx, j = (3a)

_'y,. =.== 2 6_ ,.i. - _,:ij. = (3b)

n n-1
gz =26z -Sz (3c)

t, I. II t,J,k I,I ,la

and then corrects the displacements using several Jacobi
iterations of the static equations written as

_ -,'. +...+ k =,jk_
_,+l '* _ j k .+., i.j.k..... (4a)

_',a. k k +...+ k
i +_-.j, _ i.j. _-_.

k ;.,.,_+,,.,.+...+ k ,_,+ ' i.j. k--; ,a .... (4b)I_ n+I __

_,.,._ k + ...+ k
t ,

i+3.J,k i, j,k-_

k +'.,., _'. +...+ k ._',
+ .l.l i, j. k--_ l,J,* -In+l

_= --,.+., k + ...+ k (4C)
i*_.j.k i.j,,,-_

For the applications performed in the present study, two to
four Jacobi iterations were sufficient to accurately move the
mesh.

To demonstrate mesh movement using the deforming
mesh algorithm, consider the coarse grid about a NACA 0012
airfoil that is shown in Fig. 1 (a). The grid is of C-type
mesh topology and has 43 points in the "wrap-around"
direction and 11 points in the outward direction. It is used
only to illustrate how the mesh moves. In this example, the
airfoil was plunged for one cycle of slnusoidal motion with an
amplitude of one chordlength. The mesh at the maximum
plunge displacement is shown in Fig. 1 {b) and the mesh at
the minimum plunge displacement is shown in Fig. 1 (¢).
The mesh moves smoothly as the airfoil plunges, and the
procedure is completely general In that it can treat realistic
airfoil or wing motions Including aeroelastic transient-type
motion.

Since the mesh can now deform to accommodate the
aeroelastically deforming wing, the flow solver in the CFL3D
code was modified to include an extra term in the time-
discretization of the governing equations, to account for the
mesh deformation. Specifically, the modification involves
the change in cell volume when the mesh deforms. The

algorithm changes are derived by first writing _/at in the

Fig. 1

+
i

1 !--,-..,.,.,.

|

(a) original grid (for reference).

I

(b) plunge upward one chordlenglh.

'm
" ..--= =.,..

(c) plunge downward one chordlength.

Sequence of grids about the NACA 0012 airfoil
which illustrates how the mesh moves for a

plunging airfoil.



governing equations (Eq. (1)) as a(QV)/at, where V is the
cell volume. The original flow solver assumed thal the cell
volume does not change in time so that

a(o V_: va__o
at at (5a)

However, if the cell volume changes in time, as it does when
the mesh deforms, the time derivative becomes

a(Q V). VaQ+QaV
_" = _ "_- (Sb)

which requires the implementation of the Qav/al lerm
within the CFL3D algorilhm.

Pulse Transfer-Function Analysi.q
Generalized aerodynamic forces that are used in

aeroelaslic analyses are typically obtained by calculating
several cycles of a harmonically forced oscillation with the
determination of the forces based on the last cycle of motion.
This method of harmonic oscillation requires one flow
calculation for each value of reduced frequency that is of
interest. In contrast, the generalized forces may be
determined for a wide range of reduced frequency in a single
flow calculation by the pulse transfer-function analysis. In
the pulse analysis, the forces are computed indirectly from
the response of the flow field due to an exponentially shaped
pulse. The analysis assumes that the system is linear which
is a reasonable assumption even for transonic cases, since
experience has shown that the response for harmonic or
aeroelastic motion is, in general, locally linear lor small
amplitudes of oscillation.

Time-Marchina Aeroalastic Analysis
In this section the aeroelastic equations of motion, the

time-marching solution procedure, and the modal
identification technique are described.

Aeroelastic Eauations of Motion
The aeroelastic equations of motion that were

incorporated within CFL3D were derived by assuming that
the general motion of the wing is described by a separation of
time and space variables in a finite modal series. 16 This
modal series involves the summation of free vibration modes

weighted by generalized displacements. Considering
Lagrange's equations leads to the equations of motion which
can be written for each mode i as

mtqi+ ClCll +klqi=Qi (6)

where qi is the generalized normal mode displacement, mi is
the generalized mass, c i is the generalized damping, ki is the
generalized stiffness, and Qi is the generalized force
computed by integrating the pressure weighted by the mode
shapes.

Time-Marchina Solution

The aeroelastic equations of motion are integrated in
time in a manner similar to that described by Edwards, et
al. 17,18 The formulation is implemented herein for
multiple degrees-of-freedom or mode shapes of a wing
following Ref. 16. Each normal mode equation represented
by Eq. (6) can be expressed in state-space form as

x i = Ax i + Bu i (7)

where A and B are coefficient matrices that result from the

change of variables x i = [qi Cli]T and ui is the nondimensional

generalized force weighted by mode i. Equation (7) is
integrated in time using the modified slate-transition matrix

structural integrator 18 implemented as a predictor-
corrector procedure, which first uses a linear extrapolation
of ui from previous time steps as

n+l n n n-1

21 =¢xi+eB(3ui-u i )/2 (Sa)

n+l n + 1 n+l

to compute 21 , the prediction for x t . Then, _1 is

used to compute the flow field and evaluate the load vector

n+l

g i These values are then used in the corrector step to

determine xin+l given by

n+l n n+l n
x I =¢)xi+@Blg t +ui)/2 (8b)

In Eqs. (8a) and (8b), • is the state-transition matrix and
8 is the integral of the state transition matrix from time
step n to n+l.

Modal Identification Techniaua
Damping and frequency characteristics of the aeroelastic

responses are estimated from the response curves by using
the modal identification technique of Bennett and
Desmarais. 19 The modal estimates are determined by a least
squares curve fit of the responses of the form

qi("r) =ao+ _. e °iT
i-1 [aJ cos (_ iT) +bJ sin( (° IT)]

i=1,2 ....
where m is the number of modes.

(9)

Results and Discussion

Results are presented in this section for the NACA 0012
airfoil and a 45 ° sweplback wing, computed using CFL3D, to
verify the deforming mesh capability and to assess the code
for aeroelaslio analysis. The accuracy of these results is
determined by making detailed comparisons with CFL3D
calculations performed using a rigidly moving mesh,
published results oblained using altemative computational
methods, and available experimental data.

=

i---- --

Fig. 2 Partial view of 159 x 49 C-type mesh about the
NACA 0012 airfoil.



NACA 0012 Airfoil Results
Calculations were performed for the NACA 0012 airfoil

by using the CFL3D code run in a 2-D mode. The results
were obtained using a 159 x 49 C-type mesh, a partial view
of which is shown in Fig. 2. The outer boundaries of the
mesh were located approximately fifteen chordlengths from
the airfoil and there are 110 points which lie on the airfoil
surface. Calcula|ions were performed for the airfoil at M, =

0.8 and zero degrees angle of attack. In these calculations,
the Euler equations were solved using the CFL3D code with a
third-order accurate upwind-biased spatial discretization
and flux-vector splitting. Steady results are compared with
the experimental pressure data of Ref. 20 and the unsteady
results are compared with the parallel computational results
of Ref. 11, obtained using the 2-D Euler code of Ref. 21.

_;teady Pressure Comoarisons. - The calculated steady
pressure distribution along the upper surface of the airfoil
is compared with the experimental data in Fig. 3. These
pressures indicate that there is a moderately strong shock
wave near the airfoil midchord, which is accurately
predicted by CFL3D in both strength and location. Such a
good comparison suggests that viscous effects for this case
are relatively small and, thus, the flow can be modeled
accurately by the Euler equations.

Generalized Force Comparisons. Generalized

aerodynamic forces for the NACA 0012 airfoil are presented
in Fig. 4. The results are plotted as real and imaginary
components of the unsteady forces, Aij, as 8 function of
reduced frequency k. Both plunge and pitch-about-the-
quarter-chord motions were considered, which are defined
as modes 1 and 2, respectively. Thus, for example, A12 is

the lift coefficient due to pitching. Figure 4 compares
results obtained using several different methods including:
(1) the pulse analysis with a rigidly moving mesh; (2) the
pulse analysis with a deforming mesh; (3) harmonic motion
with a deforming mesh; and (4) the harmonic Euler results
from Ref. 11. With the rigidly moving mesh, the mesh
simply translates for airfoil plunge motion and rotates for
airfoil pitch motion. The harmonic results were obtained at
six values of reduced frequency: k - 0.0, 0.125, 0.25, 0.5,
0.75, and 1.0. The amplitudes of motion were 0.01
chordlengths and 0.1 degrees for plunge and pitch,
respectively, in both harmonic and pulse analyses.

As shown in Fig. 4, the forces from the pulse analysis
obtained using the deforming mesh agree very well with the
forces obtained using the rigidly moving mesh. This good
agreement between the two sets of forces tends to verify the
deforming mesh capability that was implemented within
CFL3D. As further shown in Fig. 4, the pulse results agree
well with the forces from the harmonic analysis, for both
plunge and pitch motions, for the entire range of reduced
frequency that was considered. The harmonic analysis,
however, is considered to be the more accurate of the two
sets of calculations, since the local linearity assumption in
the pulse analysis is questionable for transonic cases.
Furthermore, the generalized forces determined using the
harmonic analysis agree well with the Euler forces of
Rausch, et al. 11 which gives additional confidence in the
accuracy of the deforming mesh capability that was
implemented.

Aeroelastic Comparisons. - Aeroelaslic results are
presented for a much-studied case designated as Case A of
Isogai, 22 which has normal modes similar to those of a
streamwise section near the tip of a sweptback wing. The
wind-off bending and torsion natural Irequencies are 71.33
and 535.65 rad/sec, respectively. The pivot point for the
bending mode is located 1.44 chordlenglhs upstream of the
leading edge of the airfoil. The pivot point for the torsion
mode is 0.068 chordlengths forward of midchord. These
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Comparison of upper surface steady pressure
distributions on the NACA 0012 airfoil at M, - 0.8
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Fig. 4 Comparisons of generalized aerodynamic forces for
the NACA 0012 airfoil at M, - 0.8 and a o - 0 °.
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Table 1 Comparisons between aeroelastic solutions for the NACA 0012 airfoil
at M- = 0.8 and _o = 0° for Case A.

.2

.5

.8

Method

CFL3D time-marching
Euler (Rausch) time-marching

o/(oa

-.011
-.011

Mode 1
(o/(ou

.794

.790

Mode 2

olmu (ol(oa

-.091 5.363
-.068 5.353

CFL3D time-marching .004 .914 -. 1 85
Euler (Rausch) time-marching .000 .913 -.148

CFL3D time-marching .026 1.027 -. 1 73
Euler (Rausch) time-marching .017 1.022 -.223

5.347
5.349

5.270
5.317

-- CR.3D

------ Euler (Rausch)
x 10 -=

__ L 0-O.2

-1L_V _ "_ _" 0-o.5

3i-

21 -

0

__ (3- o.s

--2--

_3 _ I I I I I
o .04 .08 .12 .16 .20

T

Comparisons of generalized displacements for the
NACA 0012 airfoil at M, ,,, 0.8 and u o ,, 0 ° for

Case A.

mode shapes and natural frequencies were determined by
performing a free vibration analysis with the aeroelastic
equations written in the traditional form of plunge and pitch
degrees of freedom. In this analysis, the following
structural parameter values were used: a - -2.0, x_ - 1.8,

rct= 1.865, (oh - 100 rad/sec, and (o_ - 100 rad/sec. Also,
the airfoil mass ratio was p = 60. Generalized displacements
corresponding to the bending and torsion modes are defined as
ql and q2, respectively. Initial conditions for the time-
marching aeroelastic analysis were 41(0) = 2.0 and _12(0) =
0.01.

Aeroelastic results for Case A were obtained for several
values of nondimensional dynamic pressure including _; -
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, 1o obtain conditions
which bracket the flutter point. Figure 5 shows time
responses_of generalized displacement of the second coupled
mode for Q = 0.2, 0.5, and 0.6 which correspond to stable,
near neutrally stable, and unstable aeroelastic behavior,
respectively. Also plotted are the corresponding responses
reported in Ref. 11. A comparison of these responses
indicates that the time-marching aeroelastio results from
the CFL3D code agree well with those from the Euler code of
Ref. 11, which tends to verify the aeroelastic modeling
procedures that were implemented. Shown tn Fig. 6 are the
two-mode curve fits of the CFL3D responses which are
excellent approximations to the original data. The component
modes from these curve fits are shown in Fig. 7 for the three
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Effects of nondimensional dynamic pressure on the
component modes of the aeroelastio system for the
NACA 0012 airfoil at M, = 0.8 and u o - 0° for
Case A.



valuesof_ that were considered in Figs. 5 and 6. The results
of Fig. 7 show that the component modes consist of a
dominant mode corresponding to bending (mode 1) and a
second higher-frequency mode corresponding to torsion
(mode 2). Damping and frequency estimates from this
analysis are compared with similar values from Rausch, el
a1.11 in Table 1. These comparisons Indicate that the CFL3D
values correlate well with the Euler values from Ref. 11.
Also, the flutter value for _ computed by quadratic
interpolation of the damping values, was 0.48 for CFL3D
which compares with 0.50 as reported in Ref. 11. Linear
theory at M, - 0.8, which of course does not include
transonic effects, predicts a much higher flutter value of
1.89.

45 ° Sweotback Win 0 Results

Calculations were performed for a simple well-defined
wing, to assess the CFL3D code for three-dimensional
aeroelastic applications. The wing that was analyzed was a
semispan wind-tunnel-wall-mounted model fhal has a
quarter-chord sweep angle of 45 °, a panel aspect ratio of
1.65, and a taper ratio of 0.66.15 The wing is an AGARD
standard aeroelastic configuration which was tested in the

Transonic Dynamics Tunnel (TDT) at NASA Langley Research
Center. A planview of the wing is shown in Fig. 8. The wing
has a NACA 65A004 airfoil section and was constructed of
laminated mahogany. In order to obtain flutter for a wide
range of Mach number and density conditions in the TDT,
holes were drilled through the wing to reduce its stiffness.
To maintain the aerodynamic shape of the wing, the holes
were filled with a rigid foam plastic. A photograph of the

_Y
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Fig. 10 Oblique projections of natural vibration modes of
45" sweptback wing.
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Fig. 11 Deflection contours of natural vibration modes of
45 ° sweptback wing.

Fig. 6 Planview of 45 ° sweptback wing.
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Fig. 9 45 ° sweptback wing in the NASA Langley Transonic
Dynamics Tunnel.
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Fig. 12 Partial view of 193 x 33 x 41 C-H-type mesh
about the 45 ° sweplback wing.



wingmountedintheTDTisshowninFig.9. Thewingis
modeledstructurallyusingthefirst four natural vibration
modes which are illustrated in Figs. 10 and 11. Figure 10
shows oblique projections of the natural modes while Fig. 11
shows the corresponding deflection contours. These modes
which are numbered 1 through 4 represent first bending,
first torsion, second bending, and second torsion,
respectively, as determined by a finite element analysis.
The modes have natural frequencies which range from 9.6 Hz
for the first bending mode to 91.54 Hz for the second torsion
mode.

Aeroelastic results were obtained for the 45 ° sweptback
wing using a 193 x 33 x 41 C-H-type mesh, a partial view
of which Is shown in Fig. 12. Calculations were performed

for the wing at M= =0.9 and zero degrees angle of attack.

In these calculations, the Euler equations were solved using
the CFL3D code with a second-order accurate upwind-biased
spatial discretization and flux-vector splitting. Aeroelastic
transients were obtained for several values of dynamic
pressure Q, to obtain conditions which bracket the flutter
point. Figure 13 shows time responses of generalized
displacement of the first bending mode for Q=0.9 Q exp, 1.0
Q exp, and 1.1 Q exp, where Q exp is the experimental
flutter dynamic pressure value. Also shown in Fig. 13 are
the two-mode curve fits of the responses which are very
good approximations to the original data. The component
modes from these curve fits are shown in Fig. 14 for the
three values of Q that were considered in Fig. 13. The
results of Fig. 14 show that Ihe component modes consist of a
dominant mode corresponding to first bending (mode 1) and a
higher-frequency damped mode corresponding to first
torsion (mode 2). Also, the flutter value for Q computed by
quadratic interpolation of the damping values was 0.92
Qexp. Although the calculated value is slightly low in
comparison with the experimental value, it is within 1% of
the value predicted by the CAP-TSD transonic small-

disturbance code, 16 which tends to verify the computational
aeroelasticity methods of the present study.

Concludina Remarks

Modifications to the CFL3D three-dimensional unsteady
EulerlNavier-Stokes code for the aeroelastic analysis of
wings were described. The modifications involve including a
deforming mesh capability which can move the mesh to
continuously conform to the instantaneous shape of the
aeroelastlcally deforming wing, and including the structural
equations of motion for their simultaneous time-integration
with the governing flow equations. Calculations were
performed using the Euler equations to verify the
modifications to the code and as a first step toward
aeroelastio analysis using the Navier-Stokes equations.

Results were presented for the NACA 0012 airfoil and a
45 ° sweptback wing to demonstrate applications of CFL3D
for generalized force computations and aeroalastic analysis.
Detailed comparisons were made with published Euler
results for the NACA 0012 airfoil which indicated very good
agreement for generalized forces due to harmonic motion in
pitch or plunge, and good agreement for aeroelastic
transients corresponding to stable, neutrally stable, and
unstable aeroelastic behavior. This favorable correlation
tends to verify the deforming mesh capability and the
aeroelastic modeling procedures that were implemented
within CFL3D. Aeroelastic transients were obtained for a

45 ° sweptback wing which also demonstrated stable,
neutrally stable, and unstable behavior. The resulting
flutter dynamic pressure, determined by interpolation of the
dominant damping values, was within 8% of the
experimental flutter value and within 1% of a transonic
small-disturbance result.
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372. Also, the authors would like to thank Jim Thomas and
Kyle Anderson of the Analytical Methods Branch, NASA
Langley Research Center, Hampton, Virginia, and Sherrio

ql

ql

Data

ql

Fig. 13

A
v

A.02
0

-.o,-V \--o_

-.06 I I I
0 .O4 .08 .12

T

Two-mode fit

Q = 0.9 Qexp

Q = 1.0 Qexp

Q ,. 1.1 Qexp

I I
.16 .20

Effects of dynamic pressure on the generalized
displacement of the first bending mode for the 45 °

sweptback wing at M =0.9and ,',o=0 °.

Amplitude

Amplitude

Amplitude

.0

"°'
.02 ;_'_

0 ,,.,,. -

-.02 !

-.06 I
0 .IN .O8 .12

T

Mode 1

m m_ Mode 2

Q = 0.9 Qexp

Q = 1.0 Qexp

O ,, 1.1 Qexp

] I
.16 .20

Fig. 14 Effects of dynamic pressure on the first two
component modes of the aeroelastic system for the

45 ° sweplbeck wing at M =0.9 and ¢Xo=0 ° .



KristofVigyanResearchAssociates,Hampton,Virginia,for
many fruitful discussions during the course of the present
work.

F]eferences

1Edwards, J. W.; and Thomas, J. L.: Computational
Methods for Unsteady Transonic Flows, AIAA Paper No. 87-
0107, January 1987.

2Borland, C. J.; and Rizzetta, D. P.: Nonlinear Transonic
F/utter Analysis, AIAA Journal. vol. 20, November 1982,

pp. 1606-1615.

3Batina, J. T.; Seidel, D. A.; Bland, S. R.; and Bennett, R.
M.: Unsteady Transonic Flow Calculations for Realistic
Aircraft Configurations, Journal of Aircraft, vol. 26,
January 1989, pp. 21-28.

41sogai, K.; and Suelsuga, K.: Numerical Simulation of
Transonic Flutter of a Supercritical Wing, National
Aerospace Laboratory, Japan, Rept. TR-276T, August 1982.

51de, H.; and Shankar, V.J.: Unsteady Full Potential
Aeroelastic Computations for Flexible Configurations, AIAA
Paper No. 87-1238, June 1987.

6Bendiksen, O. O.; and Kousen, K. A.: Transonic Flutter
Analysis Using the Euler Equations, AIAA Paper No. 87-
0911, April 1987.

7Kousen, K. A.; and Bendiksen, O. O.: Nonlinear Aspects of
the Transonic Aeroelastic Stability Problem, AIAA Paper No.
88-2306, April 1988.

8Wu, J.; Kaza, K. R. V.; and Sankar, L. N.: ATechnique for
the Prediction of Airfoil Flutter Characteristics In Separated
Flow, AIAA Paper No. 87-0910, April 1987.

9Reddy, T. S. R.; Srivastava, R.; and Kaza, K. R. V.: The
Effects of Rotational Flow, Viscosity, Thickness, and Shape on
Transonic Flutter Dip Phenomena, AIAA Paper No. 88-
2348, April 1988.

lOGuruswamy, G. P.: Time-Accurale Unsteady
Aerodynamic and Aeroelastic Calculations of Wings Using
Euler Equations, AIAA Paper No. 88-2281, April 1988.

11Rausch, R. D.; Batina, J. T.; and Yang, T. Y.: Euler
Flutter Analysis of Airfoils Using Unstructured Dynamic
Meshes, AIAA Paper No. 89-1384, April 1989.

12Anderson, W. K.; Thomas, J. L.; and Van Leer, B.:
Comparison of Finite Volume Flux Vector Splittings for the
Euler Equations, AIAA Journal, VoI. 24, September 1986,
pp. 1453-1460.

13Anderson, W. K.; Thomas, J. L.; and Rumsey, C. L.:
Extension and Application of Flux-Vector Splitting to
Unsteady Calculations on Dynamic Meshes, AIAA Paper No.
87-1152, June 1987.

14Batina, J. T.: Unsteady Euler Algorithm With
Unslruclured Dynamic Mesh for Complex-Aircraft
Aeroelastic Analysis, AIAA Paper No. 89-1189, April 1989.

15yates, E. C., Jr.; Land, N. S.; and Foughner, J. T., Jr.:
Measured and Calculated Subsonic and Transonic Flutter
Characteristics of a 45 ° Sweptback Wing Planform in Air
and in Freon-12 in the Langley Transonic Dynamics Tunnel,
NASA TN D-1616, March 1963.

16Cunningham, H. J.; Balina, J. T.; and Bennett, R. M.:
Modern Wing Flutter Analysis by Computational Fluid
Dynamics Methods, Journal of Aircraft. vol. 25, October
1988, pp. 962-968.

17Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; and
Seidel, D. A.: Time-Marching Transonic Flutter Solutions
Including Angle-of-Attack Effects, _, Vol.
20, November 1984, pp. 899-906.

18Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; and
Seidel, D. A.: Time-Marching Transonic Flutter Solutions
Including Angle-of-Attack Effects, AIAA Paper No. 82-
3685, May 1982.

19Bennett, R. M.; and Desmarais, R. N.: Curve Fitting of
Aeroelaslic Transient Response Data with Exponential
Functions, In "Flutter Testing Techniques," NASA SP-415,
May 1975, pp. 43-58.

2OMcDevitt, J. B.; and Okuno, A. F.: Static and Dynamic
Pressur_ Measurements on a NACA 0012 Airfoil in the Ames
High Reynolds Number Facility, NASA TP-2485, June
1985.

21Batlna, J.T.: Unsteady Euler Airfoil Solutions Using
Unstructured Dynamic Meshes, AIAA Paper No. 89-0115,
January 1989.

221sogai, K.: Numerical Study of Transonic Flutter of a
Two-Dimensional Airfoil, National Aerospace Laboratory,
Tokyo, Japan, TR-617T, July 1980.



Report Documentation Page

1. Report No.

NASA TM-102733

2. Government Accession No.

4. Title and Subtitle

Aeroelastic Analysis of Wings Using the Euler

Equations with a Deforming Mesh

7. Authoris)

Brian A. Robinson

John T. Batina

Henry T. Y. Yang

9, Performing Organization Name and Address

NASA Langley Research Center

Hampton, Virginia 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. Recipient's Catalog No.

5. Report Date

November 1 990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

5 05 -63 -5 0-I 2

fl. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Suppiernentary Notes

Presented as AIAA Paper No. 90-1.032 at the AIAA/ASME/ASCE/AHS/ASC 31st Structures,

Structural Dynamics, and Materials Conference, Long Beach, California, April 2-4,
1990.

Brian A. Robinson: McDonnell Aircraft Company, St. Louis, Missouri; John T. Batina:

Langley Research Center. R_mnton. V_r_n1_" Rpnry T_ Y_ Y_na_ P,,r_,,_ 1]n_r_v
16. A_re_ _" West Lafayette, 16dian

Modifications to the CFL3D three-dlmenslonal unsteady Euler/Navler-Stokes code

for the aeroelastic analysis of wings are described. The modifications involve

including a deforming mesh capability which can move the mesh to continuously

conform to the instantaneous shape of the aeroelastlcally deforming wing, and

including the structural equations of motion for their simultaneous tlme-integration

with the governing flow equations. Calculations _re performed using the Euler

equations to verify the modifications to the code and as a flrst-step toward

aeroelastlc analysis using the Navler-Stokes equations. Results are presented for

the NACA 0012 airfoil and a 45 ° sweptback wing to demonstrate applications of CFL3D

for generalized force computations and aeroelastlc analysis. Comparisons are made

with published Euler results for the NACA 0012 airfoil and with experimental flutter

data for the 45 ° swepthack wing to assess the accuracy of the present capability.

These comparisons show good agreement and, thus, the CFL3D code may be used with

confidence for aeroelastic analysis of wings. The paper describes the modifications

that were made to the code and presents results and comparisons which assess the

capa bil it y.

17. Key Words (Suggested by Author(s))

Unsteady Aerodynamics

Computational Fluld Dynamic s

Transonic Flow

Aero ela st ic it y

19. Security'Clu,_. (of thin report) 20. Security Classif. (of this page)

Unclassif led

NASA FORM 1626 OCT 86

18. Distribution Statement

Unclassified - Unlimited

Subject Category 02

Uncla ssif ied

21. No. of pages 22. Price

1 0 A02






